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Summary of Progress

In this report, we present the results of our recent work on turbo coding in two formats.

Appendix A includes the overheads of a talk that has been given at four different locations

over the last eight months: the Allerton Conference in Monticello, Illinois (October, 1995);

Motorola Communications in Schaumburg, Illinois (February, 1996); NASA's Turbo Coding

Conference at Southern University (February, 1996); and the IEEE Communication Theory

Workshop in Destin, Florida (April, 1996). This presentation has received much favorable

comment from the research community and has resulted in the full-length paper included as

Appendix B. This paper has been accepted for publication in the special issue on coding and

complexity of the IEEE Transactions on Information Theory to appear in November, 1996.

Major contributions to this paper were made by Dr. Lance C. Perez, a postdoctoral research

associate supported by the grant and by three students from the Swiss Federal Institute of

Technology: Jan Seghers, Guido Meyerhaus, and Dieter Arnold. These students have worked

with Drs. Costello and Perez on turbo coding research over most of the last year.
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Introduction

• In 1993, a new coding scheme, called TURBO codes, was pro-

posed for achieving near capacity performance in the power

- limited region of the additive white Gaussian noise (AWGN) chan-

nel.

-. TURBO codes use a parallel concatenation of rate 1/2 convo-

lutional encoders combined with iterative mazimum a posteriori

- probability (MAP) decoding to achieve a bit error rate (BER) of

10 -5 at a signal-to-noise-ratio (SNR) of only 0.TdB.

-. The channel capacity for a rate 1/2 code with binary phase-shift-

keyed (BPSK) modulation on the AWGN channel is 0dB, and

- thus the TURBO coding scheme comes within 0.7dB of capacity

at a BER of 10 -5.

-. In this paper, we present some results on the relationship be-

tween the structure of the TURBO encoder and the resulting

- distance spectrum of the code. These results provide an exp!ao

nation for the excellent performance of this coding scheme.
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TURBO Code Performance
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Figure 1: Performance of the TURBO Code.

-o The performance curve of the TURBO code has two remarkable

features: -

1. For low SNR's the curve is very steep, thus enabling near

capacity performance at a BER of 10-5.

2. For moderate and high SNR's, the curve flattens Out, re-

sulting in what has been called the "error floor".

, The performance of the TURBO code is distinctly different

from the performance of conventional convolutional codes such

as the maximal free distance (MFD) (2, 1, 14) code with Viterbi

decoding.
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Figure 2: Block diagram of the TURBO encoder.

w

• The TURBO code uses two identical rate R = 1/2, constraint

_ length v = 4, convolutional encoders in systematic feedback

form in a "parallel concatenation" configuration.

4 Each encoder is punctured to rate R = 2/3. The systematic

- form of the encoders results in each information bit being sent

only once. Thus, the overall rate of the TURBO encoder is

1 ......

RTURBO ----"2+i+i

, The pseudorandom interleaver insures, with high probability,

that the codeword generated by the first encoder in response to

the input sequence {xk} is different than the codeword gener-

ated by the second encoder in response to the interleaved input

sequence {x_}.
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, For example, the encoder used in the original TURBO

has the following generator matrix

I+D 4

code

• If the input sequence is x(D) = 1 + D + D 2 + D 3 + D 4, then the

_ output of the first encoder is [x(D),yl(D)], where yl(D) = 1 + D 4

is the parity output (ignoring puncturing).

, Suppose the interleaver maps the input sequence x(D) to the

- sequence x'(D) = 1 + D 2 + D 3 + D 5 + D 6, which becomes the input

to the second encoder. (Note that the weight of the input se-

quence is not changed by the interleaver.) The output of the

second encoder is then [x'(D), y2(D)], where y2(D), the parity out-

put, now has infinite weight, since x'(D) and the denominator

_ polynomial 1 + D + D 2 + D 3 + D 4 are relatively prime.

In this manner, the pseudorandom interleaver makes it unlikely

that both encoders will generate low weight parity sequences

in response to a particular input sequence.

- It is tempting at this point to conclude that the excellent per-

formance of the TURBO code is due to a large free distance.

However, this turns out not to be the case.
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Figure 3: Block diagram of the TURBO Decoder.

• The "parallel concatenation" of encoders is iteratively decoded

_ by two identical MAP decoders.

-. In order for the iterative decoding technique to be effective,

soft information must be passed from one decoder to the next.

This is done using a portion of the log-likelihood ratio, A_(k),

calculated by the MAP decoding algorithm.

-, Each pass through the two decoders counts as one iteration.

-. A total of 18 iterations are required to achieve a BER of 10 -5

at an SNR of 0.7dB.
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Convolutional Codes

-o In order to understand the performance of TURBO codes, it

is instructive to first consider the performance of convolutional

codes with finite length input sequences

hood (ML) decoding.

and maximum likeli-

-* With finite length input sequences of length N, a (2, 1, _) convo-

lutional code may be viewed as a block code with 2N codewords

- of length 2(_ + N).

w

• The information bit error probability of the code is upper bounded

_ by

VQ ),- i=l

where w_ and di are the information weight and total Hamming

- weight, respectively, of the i _h codeword.

w

• Collecting codewords of the same total Hamming weight and

defining the average information weight per codeword as

Wd
ZVd = m

N_'

where Wd is the total information weight of all codewords of

weight d and Nd is the number (multiplicity) of codewords of

_ weight d, yields

o_ Nd_d
Pb_< E

d=dfree N
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Convolutional Codes (cont.)

• If a time-invariant convolutional code has N O codewords of

- weight d and length I caused by information sequences x(D)

whose first one occurs at time 0, then it also has N o codewords

of weight d and length l caused by information sequences Dx(D),

_ N_ codewords of weight d and length l caused by information

sequences D2x(D), and so on.

• Thus,

have

and the

as the length of the information sequences increases we

lim Nd -+ N_N, and Nd = NO
N_oo N

bound on the BER of a convolutional

decoding becomes

code with ML

oo NaSa
Pb<_E 1 R E b'_ "'Q z

d=dfree

This bound is dominated by the first term for moderate and

- high SNR's.

• For this reason, most efforts to find good convolutional codes

_ have focused on finding convolutional codes that maximize the

free distance di_e_ and minimize the multiplicity N_e for a given

rate and constraint length.
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Figure 4: Asymptotic performance of the (2, 1, 14) code.

L0

-. The first term in the bound is given by

0 0
where _y,_ = ?.12free/YYree follows from time invariance. (For the

MFD (2, 1, 14) code, d/,_ = 18, Ny,_° __ 33, and wf,_° -- 187.) This

term is referred to as the free distance asymptote and accurately

predicts the performance of the code for high SNR's.

J For low SNR's, however, the performance is much worse than

the free distance asymptote.
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The (2,1,14) Code (cont.)

-_ The performance of the MFD (2, 1, 14) code for high SNR's is

limited by its free distance asymptote.

. But for low and moderate SNR's there is a significant gap be-

tween the asymptote and the actual performance of the code.

This gap can be explained by examining the distance spectrum

of the (2, 1, 14) code.

The distance spectrum of this code is

w°
18 33 187

20 136 1034

22 835 7857

24 4787 53994

26 27941 361762

28 162513 2374453

30 945570 15452996

32 5523544 99659236

Recall that the total multiplicity Nd--+ NON for large N!
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The (2,1(14) Code (cont.)
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Figure 5: Decomposed performance of the MFD (2, 1, 14) code.

3.0

• By plotting the contribution to the BER of each spectral line,

_ it is easily seen that for SNR's less than Eb/No = 2.7 dB the

performance is not dominated by the free distance asymptote.

• Instead, the higher distance paths dominate the performance

- for these SNR's due to their very large multiplicities.

* Thus, the relatively large difference between the real coding

gain and the asymptotic coding gain of the (2, 1, 14) code is due

to its very dense distance spectrum.
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TURBO Codes

, The performance of the TURBO code with ML decoding is also

upper bounded by

Pb_<• d_ ,

where w_ and d_ are the information weight and total Hamming

weight, respectively, of the i _h codeword.

• However, in the TURBO encoder, the pseudorandom inter-

leaver maps the sequence x(D) to x'(D) and the sequence Dx(D)

- to a sequence x"(D) that is different from Dx'(D) with very high

probability.

2 Thus, the input sequences x(D) and Dx(D)

codewords with different Hamming weights.

produce different

• As the interleaver size N increases, the total multiplicity of

_ free distance codewords N/,.ee (not just those starting at time

0) approaches a constant that is much less than N. (This is not

- true for rectangular interleavers!)

, Thus, the

pseudorandom interleaver is

- N d#ooo ..j

free distance asymptote for a TURBO code with a

where

N#ee < < N.
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Figure 6: Asymptotic performance of the TURBO code.

_.. The original TURBO code with an N = 65536 pseudorandom

interleaver has df,.e_ = 6, Nf,._e = 3, and @/,_ = 2.

--. The free distance asymptote for the TURBO code is thus

0"25Eb / .

- Note that the exponent is much smaller than for the (2,1,14)

_ code, but the coefficient is also greatly reduced, resulting in a

- much flatter curve.

-. Comparing the simulation results of the TURBO code with

the free distance asymptote, it it clear that the "error floor"

is simply the result of the code approaching its free distance

asymptote.
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Spectral Thinning

• In view of the analysis of the (2, 1, 14) code, it is reasonable to

- suggest that the excellent performance of the TURBO code at

low and moderate SNl=t's is due to a relatively "thin" distance

- spectrum.

• That is_ the TURBO code is able to follow its free distance

- asymptote at lower SNR's because the multiplicities of higher

weight codewords are small enough that the free distance asymp-

tote remains the dominant term in the bound.

J The distance spectrum of TURBO codes is the result of a pro-

cess called "spectral thinning" in which the interleaver effec-

_ tively moves many lower weight codewords to a higher weight.

• This theory is supported by simulation results and actual cal-

culations of the distance spectrum of several TURBO codes.
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Spectral Thinning
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Figure 7: Hypothetical distance spectra of TURBO codes.

-e This figure conceptually depicts the process of spectral thinning

for three different size pseudorandom interleavers.

, As the size of the interleaver increases_ more low weight code-

words are moved to higher weights and the distance spectrum

_ approaches a binomial distribution with small variance and

mean close to N.
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, With an interleaver of length N = 100000, the TURBO code has

- the following distance spectrum:

d Nd Wd

6 8 16

8 22 54

10 41 157

12 150 323

14 721 1462

Recall that these are the total

values of N°!

multiplicities Nd, not just the

* In this case, we see that the free distance asymptote remains

the dominant performance parameter even for low SNR's.
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Conclusions

• The excellent performance of TURBO codes may be explained

in terms of the distance spectrum of the code.

• The "error floor" observed in simulations of TURBO codes is

a manifestation of the free distance asymptote. Since TURBO

codes have relatively low free distances, the free distance asymp-

tote dominates performance at moderate and high SNR's.

-• The "error floor" can be lowered by increasing the size of the

_ interleaver (without changing the free distance) or by increas-

ing d/,._.

• The exceptional performance of TURBO codes at low SNR's

is due to "spectral thinning" and the resultant ability of the

code to follow its free distance asymptote almost to channel

capacity.

-• The combination of long block lengths, N, and low multiplicity,

Nfre,, results in a very small effective multiplicity

N free

N_H = N < < 1

compared to convolutional codes, where N_/f
0

-_ Nyree _ 1.

• The complete distance spectrum hasa randOm-like distribu-

- tion, thereby approximating a long, random block code that

can be decoded with reasonable complexity. This is consistent

with Shannon's noisy channel coding theorem and explains the

near capacity performance at low SNR's.
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1 Introduction

The discovery of Turbo codes and the near capacity performance reported in [1] has

stimulated a flurry of research efforts to fully understand this new coding scheme [2]-[44].

Initially greeted with some skepticism, the original results were independently repro-

duced by several researchers [6],[7], [11]-[12], [13], [14], and [31]. Subsequently, recent

research on Turbo codes has focused on understanding the reasons for their outstanding

performance [8]-[10], [16], [23]-[25], [29].

At this point, there are two fundamental questions regarding Turbo codes. First, does

the iterative decoding scheme presented in [1] always converge to the optimum solution?

Second, assuming optimum or near optimum decoding, why do the Turbo codes perform

so well? In this paper, we attempt to address the second issue by examining the distance

spectrum of Turbo codes. In doing so, we will draw on the work of several research groups

involved with Turbo codes [6]-[10], [13]-[15], [19]-[25]. Due to the intense interest in this

subject, many results involving Turbo codes have been developed independently by others

and the reader is encouraged to peruse the references for an alternative point of view.

The simulated performance of a rate 1/2 Turbo code with the same parameters as

in [1] is shown in Figure 1 along with simulation results for a rate R = 1/2, memory

v = 14, convolutional code. The comparison of these simulation results raises two issues

regarding the performance of Turbo codes. First, what is it that allows Turbo codes to

achieve a bit error rate (BER) of 10 -2 at a signal-to-noise ratio (SNR) of Eb/No = 0.7

db which is only 0.7dB from the Shannon limit? Second, what causes the "error floor",

that is, the flattening of the performance curve, for moderate to high SNR's? Here,

we endeavor to explain the performance of Turbo codes, and thus address these two

issues, in terms of the code's distance spectrum. We do not attempt to address the many

interesting questions concerning the iterative decoding method (see, e.g., [27], [43], and

[44]), i.e., we assume that an optimum or near optimum decoder is available.

In order to explain their performance in terms of the free distance and the distance

spectrum, we will examine the codeword structure of Turbo codes in detail. Here, the

free distance is defined to be the minimum Hamming weight of all possible codewords

and the error coefficient is the total number, or multiplicity, of free distance codewords.

The goal is to use specific examples to elucidate the key structural properties that result

in the near capacity performance of Turbo codes at BElt's around 10 -S. As will be seen,

this effort leads to an interpretation that applies to Tnrbo codes and also lends insight

into designing codes in general. Throughout the paper, Turbo codes are compared to a

maximum free distance, rate R = 1/2, memory _ = 14, i.e., a (2, 1, 14), convolutional

code to emphasize the differences in performance anti structure. Techniques for analyzing
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the performance of Turbo codes using transfer functions and the like may be found in

[_], [10], and [23].

The paper begins with a detailed examination of the structure of codewords in a

Turbo code in Section II. This leads to the calculation of the free distance of a particular

Turbo code and an explanation for the error floor in its performance curve. In Section III,

the distance spectrum of Turbo codes is considered and a theory called spectral thinning

is introduced and used to explain the performance of Turbo codes at low SNR's. The

idea of spectral thinning is then formalized in Section IV through the use of random

interleaving. Finally, some conclusions are drawn concerning the distance spectrum of

Turbo codes and the consequences of this on the design of codes in general.

2 The Free Distance of Turbo Codes

In order to find the free distance of a Turbo code, it is necessary to understand the basic

structure of the encoder and the resulting codewords. A typical Turbo encoder consists of

the parallel concatenation of two or more, usually identical, rate 1/2 encoders, realized in

systematic feedback form, and an interleaver. This encoder structure is called a parallel

concatenation because the two encoders operate on the same set of input bits, rather

than one encoding the output of the other. A block diagram of a Turbo encoder with

two constituent convolutional encoders is shown in Figure 2. For the remainder of the

paper, only Turbo encoders with two identical constituent convolutional encoders are

considered, though the conclusions are easily extended to the general case.

The interleaver is used to permute the input bits such that the two encoders are

operating on the same set of input bits, but different input sequences. Thus, the first

encoder receives the input bit x, and produces the output pair (xi, yi1) while the second

encoder receives the input bit x_ and produces the output pair (x_, yi2). The input bits are

grouped into finite length sequences whose length, N, equals the size of the interleaver.

Since both the encoders are systematic and operate on the same set of input bits, it is

only necessary to transmit the input bits once and the overall code has rate 1/3. In order

to increase the overall rate of the code to 1/2, the two parity sequences {yl} and {y2}

can be punctured by alternately deleting yl and y_. We will refer to a Turbo code whose

constituent encoders have parity check polynomials h0 and ht, expressed in either octal

or D transform notation, and whose interleaver is of length N, as an (h0, hi, N) Turbo

code.

For example, consider the Turbo encoder shown in Figure 2, where each constituent

encoder is a (2, l, 2) encoder with parity check polynomials ho(D) = 1 +D 2 and ht(D} =
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D. For purposes of illustration, assume a pseudorandom interleaver of size N = 16 bits

which generates a (1 + D 2, D, 16) Turbo code. The interleaver is realized as a 4x4 matrix

which is filled sequentially, row by row, with the input bits xi. Once the interleaver

has been filled, the input sequence to the second encoder, _, is obtained by reading

the interleaver in a pseudorandom manner until each bit has been read once and only

once. The pseudorandom nature of the interleaver in this example is represented by a

permutation 1"I16 = {6, 14, 4, 7, 11, 8, 3, 5, 9, 13, 0, 2, 12, 1, 10, 15}, which implies x D = x15,

' and so on.X 1 _--- Xl0 _

If the input sequence is x = {xls...x0} = {0, 1,0, 1,0,0,0,0,0,0,0,1,0,0,0,1} and

the interleaver is represented by the permutation Fit6, then the input sequence to the

second encoder is x' = rI16(x) = {0,1,1, o, o, o, o, o, o, o, 1, o, 1, o, o, 0}. The trellis dia-

grams for both constituent encoders with these inputs are shown in Figure 3. The cor-

responding unpunctured parity sequences are yl __ {0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,0}

and y2 = {1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0}. The resultingcodeword has Hamming

weight d = w(x) + w(y 1) + w(y _) = 4 + 3 + 3 = 10 without puncturing, where w(x) is the

Hamming weight of the sequence z. If the code is punctured beginning with y_, then the

resulting codeword has weight d = 4 + 3 + 2 = 9. If, on the other hand, the puncturing

begins with y_, then the punctured codeword has Hamming weight 4 + 1 + 1 = 6.

Finding the free distance of a Turbo code is complicated by the fact that Turbo en-

coders are time-varying due to the interleaver. That is, if :f: = Dx, where D is the delay

operator [45], then _1_ = Dy _, but _' :_ Dx' (with high probability) and _2 ¢ Dy2. (Here,

we only consider delays of a finite length sequence x for which no ones are lost.) Con-

tinuing the example, if _. = Dx, then _' = H_(5:) = (0, 0, 0, 0, 0, 0, 0, 1,0, 1, 0, 0, 0, 1, 0, 1}

and Z)e = {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0}. Thus, time shifting the input bits results

in codewords that differ in both bit position and overall Hamming weight[ The variation

in the weights of codewords corresponding to time shifted input sequences is magnified

by puncturing.

This simple example illustrates several salient points concerning the structure of the

codewords. First, because the pseudorandom interleaver permutes the input bits, the two

input sequences x and x _ are almost always different, though of the same weight, and the

two encoders will (with high probability) produce parity sequences of different weights.

Second, it is easily seen that a codeword may consist of a number of distinct error events

in each encoder, where an error event is a path in the trellis that diverges from the all zero

state and then remerges with the all zero state within a finite number of branches. Note

that since the constituent encoders are realized in systematic feedback form a nonzero

sequence is required to return the encoder to the all zero state. Thus, since at least

one nonzero bit is required to start the error event, all error events are associated with



information sequencesof weight2or greater[9]. Finally, with apseudorandominterleaver
it is highly unlikely that both encoderswill be returned to the all zerostate at the end
of the codewordevenwhen the last u bits of the input sequence x are used to force the

first encoder back to the all zero state.

If neither encoder is forced back to the all zero state, i.e., no tail is used, then the

sequence consisting of N - 1 zeroes followed by a one is a valid input sequence x to

the first encoder. For some interleavers, this x will be permuted to itself and x' will be

the same sequence. In this case, with puncturing, the weight of the codeword and the

free distance of the code will be at most two. Note that this codeword is caused by an

information sequence of weight one! Thus, forcing the first encoder to return to the all

zero state insures that every information sequence has at least weight two and eliminates

the possibility of a weight two codeword. For this reason, it is common to assume that

the first encoder is forced to return to the all zero state.

The ambiguity of the final state of the second encoder has been shown by simulation

to result in negligible performance degradation [13], [31] for large interleavers. For these

reasons, it will be assumed for the remainder of the paper that the first encoder is forced

to return to the all zero state and that the final state of the second encoder is unknown.

Special interleaver structures that result in both encoders returning to the all zero state

are discussed in [32], [33], [35], [36] and [37].

2.1 Performance Bounds

In order to make clear the distinction between Turbo codes and convolutional codes, it

is useful to consider these codes as block codes. To this end, the input sequences are

restricted to length N, where N corresponds to the size of the interleaver in the Turbo

encoder. With finite length input sequences of length N, a (2, 1, u) convolutional code

may be viewed as a block code with 2 N codewords of length 2(u + N).

The bit error rate (BEll.) performance of a convolutional code with maximum likeli-

hood (ML) decoding on an additive white Gaussian noise (AWGN) channel with an SNR

of Eb/No can be upper bounded using a union bound technique by [13]

'" w, I [ 2nzb
Po< I,Ve,-- oj,

i=1

(1)

where w_ and d_ are the information weight and total Hamming weight, respectively, of

the i th codeword. Collecting codewords of the same total Hamming weight and defining



the averageinformation weight per codeword as

where Wd is the total information weight of all codewords of weight d and Nd is the total

number, or multiplicity, of codewords of weight d, yields

2(,,+N} Na__a O [ __

d=dl,.ee

where dl,.ee is the free distance of the code. (In this development, the multiplicity N_d

includes codewords due to multiple error events for d >_ 2d/,.ee).

If a convolutional code has N o codewords of weight d caused by information sequences

x whose first one occurs at time 0, then it also has N ° codewords of weight d caused

by the information sequences Dz, N ° codewords of weight d caused by the information

sequences D2x, and so on. Thus, as the length of the information sequences increases,

we have

lim Nd = N °
N-,_ N

and

lim wd = lim Wd __W2=z__o,
N_¢ N--*= _dd -- N O

where W,_ is the total information weight of all codewords with weight d which are caused

by information sequences whose first one occurs at time 0. Thus, the bound on the BElL

of a convolutional code with ML decoding becomes

2(u+N)

which is the standard union bound for ML decoding. For this reason, efforts to find

good convolutional codes for use with ML decoders have focused on finding codes that

maximize the free distance dl,e, and minimize the number of free distance paths Ny/,_e

for a given rate and constraint length.

The performance of a Turbo code with maximum likelihood decoding can also be

bounded using the union bound of equation (2). However, in the Turbo encoder the

pseudorandom interleaver maps the input sequence x to x _ and the input sequence Dx to



.

a sequence x" that is different from Dz a with high probability. Thus, unlike convolutional

codes, the input sequences x and Dx produce different codewords with different Hamming

weights. For Turbo codes with pseudorandom interleavers, Nd_d is much less than N

for low weight codewords. This is due to the pseudorandom interleaver which, with

high probability, maps low weight parity sequences in the first constituent encoder to

high weight parity sequences in the second constituent encoder. Thus, for low weight
codewords

_dNd
_< 1,

N

where
Nd

(4)

is called the effective multiplicity of codewords of weight d. The effect of the interleaver

size on the multiplicity is also reported in [7], [8], and [9].

2.2 Asymptotic Performance

For moderate and high signal-to-noise ratios, it is well known that the free distance term

in the union bound on the bit error rate performance dominates the bound [45]. Thus,

for Turbo codes the asymptotic performance approaches

Pb /, (5)

where NIr_ is the error coefficient and '&f_e is the average weight of the information

sequences causing free distance codewords. The expression on the right hand side of

equation (5) and its associated graph is called the free distance asymptote, PI_, of a

Turbo code.

An algorithm for finding the free distance of Turbo codes is described in [29]. This

algorithm was applied to a Turbo code with the same constituent encoders, puncturing

pattern, and interleaver size N as in [1] and a particular pseudorandom interleaving

pattern. The parity check polynomials for this code are ho = D 4 + D 3 + D _ + D + 1

and hi = D 4 + 1, or h0 = 37 and hi -----21 using octal notation. This (37,21,65536)

code was found to have Nl_ee - 3 paths with weight dl_ = 6. Each of these paths was

caused by an input sequence of weight 2 and thus _/_ - 2. Though this result was

for a particular pseudorandom interleaver, it is true for most pseudorandom interleavers

with N = 65536. This is consistent with the conclusions in [61 in which the performance

of Turbo codes is averaged over all possible pseudorandom interleavers.



For this particular Turbo code,the freedistanceasymptote is given by

Psr e= \ V-No)'

where the rate loss due to the addition of a 4-bit tail is ignored and

N/,.e_ 3

N 65536

is the effective multiplicity. The free distance asymptote is shown plotted in Figure 4

along with simulation results for this code using the iterative decoding algorithm of [1]

with 18 iterations. From Figure 4, it carl clearly be scen that the simulation results do

in fact approach the free distance ,asymptote for moderate and high SNR's. Since the

slope of the asymptote is essentially determined by the free distance of the code, it can

be concluded that the "error floor" observed with Turbo codes is due to the fact that

they have a relatively small free distance and consequently a relatively flat free distance

asymptote.

Further examination of equation (5) reveals that the manifestation of the "error floor"

can be manipulated in two ways. First, increasing the length of the interleaver while

preserving the free distance and the error coefficient will lower the asymptote without

changing its slope by reducing the effective multiplicity. In this case, the performance

curve of Turbo codes does not flatten out until higher SNP,.'s and lower BER's are reached.

Conversely, decreasing the interleaver size while maintaining the free distance and error

coefficient results in the error floor being raised and the performance curve flattens at

lower SNR's and higher BER's. This can be seen in the simulation results shown in

Figure 5 for the (37, 21, N) Turbo code with varying N. If the first constituent encoder

is not forced to return to the all zero state and the weight 2 codewords mentioned earlier

are allowed, then the error floor is raised to the extent that the code performs poorly

even for large interleavers. Thus, one cannot completely disregard free distance when

constructing Turbo codes.

If the size of the interleaver is fixed, then the "error floor" can be modified by in-

creasing the free distance of the code while preserving the error coefficient. This has the

effect of changing the slope of the free distance asymptote. That is, increasing the free

distance increases the slope of the asymptote and decreasing the free distance decreases

the slope of the asymptote. It has been shown in [8], [25], [29] and [30] that for a fixed

interleaver size, choosing the feedback polynomial to be a primitive polynomial results

in an increased free distance and thus a steeper asymptote. An argument to support the

use of primitive polynomials in Turbo codes is presented in section 4.
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2.3 Comparison to the (2,1,14) Code

The role that the free distance and effective multiplicity play in determining the asymp-

totic performance of a Turbo code is fl_rther clarified by examining the asymptotic per-

formance of a convolutional code. The free distance asymptote of a convolutional code is

given by the first term in the union bound of equation (3). The maximum free distance

(2, 1, 14) code whose performance is shown in Figure 4 has dfree = 18, N_r_ _ = 18, and

W],.ee = 137 [46]. Thus, the free distance asymptote for this code is

which is also shown in Figl,re 4.

As expected, the free distance asymptote of the (2, 1, 14) code is much steeper than the

free distance asymptote of the Turbo code due to the increased free distance. However,

because the effective multiplicity of the free distance codewords, given by (4), of the Turbo

code is much smaller than the multiplicity of the (2, 1, 14) code, the two asymptotes do

not cross until an Eb/No = 3.5 dB. At this Eb/No, the BER of both codes is less than

10 -_ which is lower than the targeted BER of many practical systems. Thus, even though

the (2, 1, 14) convolutional code is asymptotically better than the (37, 21,65536) Turbo

code, the Turbo code is better for the error rates at which many systems operate.

2.4 A Turbo Code with a Rectangular Interleaver

To emphasize the importance of using a pseudorandom interleaver with Turbo codes, we

now consider a Turbo code with a rectangular interleaver. Turbo codes with rectangular

interleavers have also been considered in [2] where tile effect of the interleaver on the

free distance of the code is discussed. The same constituent encoders and puncturing

pattern as in [1] are used in conjunction with a 120 × 120 rectangallar interleaver. This

rectangular interleaver is realized as a 120 × 120 matrix into which the information

sequence x is written row by row. The input seql,ence to the second encoder x j is then

obtained by reading the matrix column by column. A 120 × 120 rectangular interleaver

implies an interleaver size of N = 14400 and thus this is a (37, 21, 14400) Turbo code.

Using the algorithm described in [29], this code was found to have a free distance of

di_e = 12 with a multiplicity of N/r_ = 28,900. For this code, each of the free distance

paths is caused by an information sequence of weight 4, so w.rr,._ = 4. The free distance

9



asymptote for this codeis thus given by

P:'""=  -4To 

The free distance asymptote is plotted in Figure 6 along with simulation results using the

iterative decoding algorithm of [1] with 18 iterations. This figalre clearly shows that the

free distance asymptote accurately estimates the performance of the code for moderate

and high EjNo's.

This code achieves a bit error rate of 10 -5 at an Eb/No of 2.TdB and thus performs 2 dB

worse than the (37, 21, 65536) Turbo code with a pseudorandom interleaver even though

it has a much larger free distance. The relatively poor performance of the (37, 21, 14400)

Turbo code with a rectangular interle_ver is due to the large multiplicity of d:r,e paths.

This results in an effective multiplicity of

N/re, 28900
--------_-- __2,

N 14400

which is much larger than the effective multiplicity of the (37, 21,65536) Turbo code. We

now show that the large multiplicity is a direct consequence of the use of the rectangular

interleaver and that, furthermore, increasing the size of the interleaver does not result in

a significant reduction in the effective multiplicity of the free distance codewords.

The free distance paths in the Turbo code with the rectangadar interleaver are due to

four basic information sequences of weight 4. These information sequences are depicted

in Figure 7 as they would appear in the rectangadar interleaver. The "square" sequence

in Figure 7a depicts the sequence x = 1,0, 0, 0, 0, 1, 0504, 1, 0, 0, 0, 0, 1, 0_, where 0s94

denotes a sequence of 594 consecutive zeroes and 0oo represents a sequence of zeroes

that continues to the end of the information sequence. In this case, the rectangular

interleaver maps the sequence x to itself and therefore x' = x. The sequence x results

in a parity sequence yl from the first constituent encoder which, after puncturing, has

weight 4. Similarly, the input sequence x' = x results in a parity sequence y2 from

the second constituent encoder which, after puncturing, also has weight 4. The weight

of the codeword is then d/,_.e = 4 + 4 + 4 = 12. By counting the number of distinct

positions in which these sequences can appear in the rectangular interleaver, we can find

the multiplicity of the fi'ee distance codewords. Since the "square" sequence in Figure

7a can appear in (v/'N- 5) x (v/'N- 5) = 13,225 distinct positions in the rectangular

interleaver, and in each case x' = x and a codeword of weight direr = 12 results, this

results in 13,325 free distance codewords. Note that for every occurrence of the "square"

10



sequenceto result in a codewordof weight 12 the weightof both parity sequencesmust
be invariant to which is punctured first.

The "rectangular" sequencesin Figures7b and 7c also result in weight 12 codewords.

For these two sequences, the weight of one of the parity sequences is affected by whether

or not it is punctured first and only every other position in which the "rectangular"

sequences appear in the interleaver results in a codeword of weight d _ - 19 Thus, the

sequences in Figure 7b and Figure 7c each result in 0.5(vfN - 10) x (vfN- 5) -- 6,325 free

distance codewords. For the sequence in Figure 7d, the weight of both parity sequences

is affected by which is punctured first and only one out of four positions in which the

"rectangular" sequence appears in the interleaver results in a codeword of weight dl,.ee =

12. Consequently, this sequence results in 0.25(v/_- 10) × (v/_- 10) = 3,025 free

distance codewords. Summing the contributions of each type of sequence results in a

total of N/tee = 28,900 codewords of weight dzr_ _ = 12.

It is tempting to try to improve the performance of a Turbo code with a rectangular

interleaver by increasing the size of the interleaver. However, all of the information

sequences shown in Figure 7 would still occur in a larger rectangular interleaver, so

the free distance cannot be increased by increasing N. Also, since the number of free

distance codewords is on the order of N, increasing the size of the interleaver results

in a corresponding increase in NI,._ such that the effective multiplicity N/r_JN does

not change significantly. Without the benefit of a reduced effective multiplicity, the

free distance asymptote, and thus the "error floor", of Turbo codes with rectangular

interleavers is not lowered enough for them to manifest the excellent performance of

Turbo codes with pseudorandom interleavers for moderate BER's. Attempts to design

interleavers for Turbo codes generally introduce structure to the interleaver and thus

destroy the very randomness that results in such excellent performance at low SNR's.

3 The Distance Spectrum of Turbo Codes

In the previous section, it was shown that the "error floor" observed in the performance of

Turbo codes is due to their relatively low free distance. It is now shown that the outstand-

ing performance of Turbo codes at low SNR's is a manifestation of the sparse distance

spectrum that results when a pseudorandom interleaver is used in a parallel concate-

nation scheme. To illustrate this the distance spectrum of an "average" (37, 21,655,36)

Turbo code is found and its relationship to the performance of the code is discussed.

The distance spectrum of the "average" Turbo code is then compared to the distance

spectrum of the (2, 1, 14) code. An "average" Turbo code is one whose properties have
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beenaveragedoverall possiblepseudorandominterleavers[8]. By doing this, the analysis
of Turbo codesand the algorithm for finding the distancespectrumaresimplified.

Using the algorithm describedin [29], an "average" (37,21,65536)Turbo code was
found to have the followingdistancespectrum

d Nd Wd
6 3 6

8 22 54

10 41 157

12 150 323

where N_ is the total number of co(lewords of weight d and Wd = Ndtbd is tile total

information weight of all codewords of weight d. The distance spectrum information

for a particular distance d is referred to as a spectral line. This data can be used in

conjunction with the bound of equation (2) to estimate the performance of the code. In

addition, by plotting each term of equation (2) the contribution of each spectral line to

the overall performance of the code can be estimated.

The performance of a (37, 21,65536) Turbo code is shown in Figure 8 along with

curves showing the contribution of each spectral line for an "average" Turbo code with

the same interleaver length. This clearly shows that the contribution to the code's BElt

by the higher distance spectral lines is less than the contribution of the free distance

term for Eb/No's greater than 0.5 dB. Thus, the free distance asymptote dominates the

performance of the code not only for moderate and high Eb/No's, but also for low Eb/No's.

We characterize distance spectra for which this is true as sparse or spectrally thin.

3.1 Comparison to the (2,1,14) Code

The ramifications of a sparse distance spectrum are made evident by examining the

distance spectrum of convolutional codes. The (2, 1, 14) convolutional code introduced

in section 2, has the following distance spectrum

12



g.o
18 33 187

20 136 I034

22 835 7857

24 4787 53994

26 27941 361762

28 162513 2374453

30 945570 15452996

32 5523544 99659236

as reported in [46]. When comparing the distance spectrum of a convolutional code and

a Turbo code, it is important to remember that for a convolutional code Nd _ N x Nd°

for the low weight codewords. Figure 9 shows the estimated pe_'formance of this code

using the bound of equation (3) and the contribution of each spectral line.

In this case, the contribution of the higher distance spectral lines to the overall BER

is greater than the contribution of the h'ee distance term for Eb/No's less than 2.7 dB,

which corresponds to BER's of less than 10-6! The large SNR require.d for the free

distance asymptote to dominate the performance of the (2, 1, 14) code is due to the rapid

increase in the path multiplicity for increasing d. We characterize distance spectra for

which this is true as spectrally dense. The dense distance spectrum of convolutional

codes also accounts for the discrepancy between the real coding gain at a particular SNP,.

and the asymptotic coding gain calculated using just the free distance [45].

Thus, it can be concluded that the outstanding performance of Ti, rbo codes at low

signal-to-noise ratios is a result of the dominance o[" the fi-ee distance asymptote, which

in turn is a consequence of the sparse distance spectrum of Turbo codes, as opposed

to spectrally dense convolutionaI codes. Finally, the sparse distance spectrum of Turbo

codes is due to the structure of the codewords in a parallel concatenation and the use of

pseudorandom interleaving.

4 Spectral Thinning

In this section, the observations made concerning the distance spectrum and spectral

thinning of Turbo codes is formalized h'om the point of view of random interleaving.

Random interleaving was introduced in [6]-[10] to develop transfer filnction bounds on the

average performance of Turbo codes and to explore issues of code design. Here, random

interleaving is used to explore the effect of the interleaver on the distance spectrum of

the code. In order to simplify the notation an([ discussion, only nonpunctured Turbo
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codesareconsideredexplicitly. The extensionto puncturedcodesisstraightforward and
may be found in [29].

The fundamental idea of random interleaving is to consider the performance of a Turbo

code averaged over all possible pseudorandom interleavers of a given length. For a given

N, there are N! possible pseudorandom interleavers and, assuming a uniform distribution,

each occurs with probability _.,. Let a particular interleaver map an information sequence

x of weight w to an information sequence x _, also of weight w. Then there are a total

of w!(N - w)! interleavers in the ensemble of N! interleavers that perform this same

mapping. Thus, the probability that such a mapping and, hence, that the codeword that

results from the inpt,t sequences x and x' occurs is

w!(N - w)! 1

N_ () '{/)

Following [8], define the inpt,t redundancy weight ent, merating fi,nction (IRWEF) of

a systematic code as

A(W, Z) = __, _ A,_,:W_Z ", (6)
It1 r,

where A,,,,z is the number of codewords of weight d = w + z generated by input sequences

of weight w and parity sequences of weight z. The goal is now to develop a relationship

between the codewords in the constituent encoders and A_,_ for the Turbo code and to

see how that relationship changes with the size of the interleaver.

Recall from section 2 that a Turbo codeword is essentially the combination of a

codeword from the first constituent encoder ph,s a codeword from the second constituent

encoder. A codeword of weight dt= w + zl fi'om the first constituent encoder caused

by an information sequence x of weight w is composed of nl error events of total length

Ix. To avoid difficulties in counting codewords when the second constituent encoder is

left unterminated, we consider different orderings of the same error events as distinct

cases. The ordered set of nl error events in the first encoder is denoted by $1. The

information sequence x that results in the set $1 is mapped by a particular interleaver

to the information sequence x', also of weight w, which is then encoded by the second

constituent encoder. This reslllts in a codeword of weight d2 = w + z_, with the ordered

set 5'2 consisting of n2 error events of total length 12.

For example, Figure 3 depicts a codeword of weight dl = 4 + 3 = 7 in the first

constituent encoder callsed by an information seql,ence of weight w = 4 and composed of

nl = 2 error events of total length ll = 5 + 3 = 8. For the interleaver described in section
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2, x is mapped to an x _ that results in a codeword of weight d2 = 4 + 3 = 7 in the second

constituent encoder consisting of n2 -- 2 error events of total length/2 -- 3 + 3 -- 6. Thus,

this $1 and 5"2 result in a codeword of weight 10 and a single contribution to A4,6 of the

Turbo code for this particular interleaver. Averaged over the ensemble of interleavers of

length N, a set S1 with information weight w and parity weight zt and a set 5'2 with

information weight w and parity weight z2 will contribute a fraction

(7)

to the enumerating flmction coefficients A_,,,+:, of an "average" Turbo code.

Because the sequence of zeroes connecting any two distinct error events has no effect

on the weight of the information sequence or the parity sequence, there are

N-ll+nl) (S)721

ways that the ordered set, St, of nt error events can be arranged such that their contri-

bution to A_,,_l+z 2 is not changed. This is simply the number of ways in which nl distinct

error events can be arranged in a sequence of length N while maintaining the order in

which they appear. Similarly, if the codeword in the second constituent encoder ends in

the all zero state, then the ordered set ,5'2 will make

N- 12 + n2 ) (9)n2

contributions to Aw,:l+:2. However, because the second encoder is not guaranteed to

return to the all zero state, it is possible that the last of the n2 error events is not

actually an error event, but instead ends in a nonzero state. In this case, the last error

event cannot be moved and the set $2 makes

( ) (lo)1)

contributions to A,,,,.-, +:, .

The contribution to the distance spectrum of a Turbo code due to any pair of ordered

sets St and $2, averaged over the ensemble of pseudorandom interleavers, can now be
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computed using equations(7), (8), (9), and (10). If the codewordin the secondcon-
stituent encoderhappensto end in the all zerostate, then the contribution of some5'1

and 5"2 to A_,zl+_2 is given by

(N-lt+nl)(N-12+n2)nt n2

(N)W

(11)

If tile codeword in the second constituent encoder does not end in the all zero state, then

the contribution to Aw,-,+:2 is given by

(N)W

(12)

Equations (11) and (12) can now be used to explore the effect of changing the interleaver

size on the distance spectrum of an "average" Turbo code.

Since we are primarily concerned with low weight codewords in the distance spectrum,

we assume that N >> nl, n2, l_, and 12. If this is not true, then $1 and $2 either contain

a very large number of short error events or a few very long error events. In both cases,

it is very unlikely that the result is a codeword of low weight. With this assumption,

equation (11) can be approximated by

w_
•/V m+'2-w (13)

nl!n2!

where, without loss of generality, it is assumed that nl > n2. Since each error event is

caused by an information sequence of weight at least two, w > 2nl. The behavior of

equation (13) for increasing N can be broken down into three cases:

1. /21 _ 722

The exponent of N is strictly negative and the contribution to Aw,:_+: 2 decreases
as N increases.

2. nl=n2 and w> 2nl

The exponent of N is strictly negative and the contribution to Aw,-,+.-2 decreases

as N increases.
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3. nl "-- n2 and/13 = 2111

The exponent of N is exactly zero and the contribution to A,,,z_+,2 converges to a

finite value as N increases.

For N >> nl, n2, ll, and 12, equation (12) can be approximated by

w! Nm+n2_w_ 1 (14)
nx!(n2 - 1)[

where w > 2nt. However, since the tail in the second encoder may be caused by an

information sequence of weight 1, we also have w > 2n2 - 1. The behavior of equation

(14) for increasing N can be broken down into three c_es:

I. nt > n2

Since w > 2nl, the exponent of N is strictly negative and the contribution to

A_,.,+, 2 decreases as N increases.

2. n I = n 2

Again, since w >_ 2nt, the exponent of N is strictly negative and the contribution

to Aw,z,+z2 decreases as N increases.

3. nt < n2

Since w > 2n2 - 1, the exponent of N is strictly negative and the contribution to

Aw,=l+=2 decreases as N increases.

The following lemma can now be stated. A similar result was proven in [10].

Lemma 1 Given a Turbo code based on two systematic feedback encoders and a pseu-

dorandom interleaver of length N in which tile first encoder is assumed to be forced back

to the all zero state, the contribution of two ordered sets of error events St and 82 with

the same information weight to the distance spectrum of the Turbo code, averaged over

all pseudorandom interleavers of length N, converges to a nonzero constant as N --+ _,

if and only if,

1. 82 leaves the second encoder in the all zero state.

I_. St and $2 contain the same number of error events.

3. Each error event in St and $2 is caused by a weight two information sequence.

In all other cases, the contribution 9oes to zero as N --_ _.
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For eachterm A_,,: in the input redundancy weight enumerating flmction of a Turbo

code there is a finite number of pairs of sets St and 5'2 that contribute to it. If either set

contains a long error event, then it is possible that that pair will be excluded for small

interleavers. As the interleaver size increases, eventually all pairs of sets will be allowed

and any further increase in N will not result in additional pairs of sets contributing to

A_:. Also, as N -+ c¢, A_,,.- will be determined by pairs of $1 and $2 that satisfy the

three conditions of Lemma 1 and thus each A_,z will converge to a finite value. Since

each spectral line is a finite sum of A_,,: terms, each spectral line converges to a finite

value as the interleaver size increases.

The convergence of each spectral line to a finite value as the size of the interleaver

increases results in spectral thinning. That is, for small interleavers there may be pail's

of sets 5'1 and 5'2 that do not satisfy the conditions oF Lemma 1, but which contribute to

the multiplicity of a low weight spectral line. As the size of the interleaver increases the

number of these aberrational sets decreases until the spectral line reaches it final value as

determined by Lemma 1. This process of spectral thinning is represented graphically in

Figure 10 which depicts the thinning of low weight codewords as the size of the interleaver

increases for hypothetical distance spectra. It is this thinning of the distance spectrum

that enables the free distance asymptote of a Turbo code to dominate the performance

for low SNR and thus to achieve near capacity performance.

4.1 Primitive Polynomials and Free Distance

We now consider the ramifications of Lemma 1 with respect to the free distance codewords

of a Turbo code. That is, what does Lemma 1 imply about the information sequences

that generate the free distance codewords in an "average" Turbo code?

For an "average" Turbo code, Lemma 1 states that as the size of the interleaver

increases each spectral line is the result of contributions only from pairs of ordered sets

of error events in which each error event is caused by a weight two information sequence.

It is reasonable to expect that the free distance spectral line will be among the first

spectral lines to converge to its final value. Thus, for reasonably large interleavers the

free distance will be determined by the sets $1 and 5'2 satisfying the conditions of Lemma

1. Let sl and s2 be any pair of error events caused by a weight two information sequence

that results in a minimum weight parity sequence in the first and second constituent

encoders, respectively. Note that there may be more than one such pair of minimum

weight error events for the constituent encoders.

A free distance codeword in an "average" Turbo code must be the result of sets $1

and 5'2 that consist of only those minimum weight error events sl and s2, respectively.
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Furthermore, sinceeachadditional error event in either S1 and $2 adds weight to the

codeword, $1 and $2 must each contain only one minimum weight error event. (If each

error event does not add weight, then a weight two information sequence exists that

generates a zero weight parity sequence and the free distance of the code would be 2.)

Thus, the free distance codewords of an "average" Turbo code are caused by weight two

information sequences, provided the interleaver is large enough.

Therefore we have the following Lemma.

Lemma 2 For an "average" Turbo code, as the size of the interIeaver N approaches c_:

1. The free distance codewords are caused by information sequences of weight 2.

2. The free distance of an "average" Turbo code is maximized by choosing constituent

encoders that have the largest output weight for weight two information sequences.

Based on this lemma, we now present an intuitive argument for why choosing the feedback

polynomial ho(D) in a (2, 1, u) systematic feedback encoder to be a primitive polynomial

maximizes the output weight for weight two information sequences. It follows that the

free distance of an "average" Turbo code is maximized by using a primitive polynomial

as the feedback polynomial in the constituent encoders. This result was independently

derived in [10] using the transfer function of an "average" Turbo code.

The generator matrix of a (2, 1, u) systematic feedback encoder is given by

hi(D)]Glb(D)= 1 _-_ ,

where ht(D) and ho(D) are referred to as the feedforward and feedback polynomials,

respectively, and ho(D) is of degree v. Since only information sequences of weight 2 are

being considered, the systematic output contributes weight 2 to the overall codeword

weight for all the encoders being considered. Therefore, only the weight contributed by

the parity sequence, that is
,,.,,ht(D)

y(D) = x Ujh0--g

needs to be maximized. Furthermore, since we are concerned only with the choice of

ho(D), hi(D) is assumed to be a polynomial such that ho(D) and ht(D) are relatively

prime. (There is empirical evidence that the choice of both polynomials can affect the

performance of the code [29], [31], but we will not address that issue in this paper.)
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Let I+D K, for somefinite K, be the shortest input sequence of weight 2 that generates

a finite length codeword. The resultant parity sequence is

y(D)
,-,g, hi(D)

= 0+,-' Jho-- 3
_ hi(D) + DKht(D)

ho(D) ho(D)"

Since y(D) is of finite length, hl(D)/ho(D) must be periodic with period K. Increasing

the period/'( increases the length of the shortest weight 2 input sequence that generates

a finite length codeword and therefore increases the length of that codeword. Intuitively,

one would expect that increasing its length would result in the codeword gaining weight.

That is, on average, half of the added bits would be ones.

A strictly proper rational function of two polynomials, like hl(D)/ho(D), is periodic

with period K <_ 2`" - 1. The period is maximized, that is, K = 2 _ - 1, when ho(D) is a

primitive polynomial. Since the free distance of an "average" Turbo code is determined by

information sequences of weight 2, for sufficiently large interleavers the free distance will

be maximized by maximizing I(. Therefore, choosing ho(D) to be a primitive polynomial

will result in a larger free distance for an "average" Turbo code.

To test this, we compare a (37, 21,400) Turbo code which has K = 5 and free distance

df,.,e - 6 to a (23, 35,400) Turbo code. Both codes are punctured as in [1]. The feedback

polynomial h0 = 23 in the second Turbo code is a primitive polynomial of degree u = 4

and thus 1/ho has a period of I( = 2" - 1 = 15. The free distance of this Turbo code

was found to be d#,, = 10 [13], [29]. Figure 11 shows simulation results for these two

codes using the iterative decoding algorithm of [1] with 18 iterations. As expected, the

second Turbo code performs better at mo(lerate and high SNR's because its fl'ee distance

asymptote is steeper due to the increased free distance.

5 Conclusions

The excellent performance of Turbo codes may be explained in terms of the distance

spectrum of the code. The 'error floor' observed in simulations of Turbo codes is a

manifestation of the free distance asymptote. Since Turbo codes have relatively low free

distances the free distance asymptote has a shallow slope, and thus the performance

curves flatten out at moderate to high SNR's. The 'error floor' may be lowered by in-

creasing the size of the interleaver for a fixed fl'ee distance, that is, by reducing the

2O



effective multiplicity of the code. Alternatively, for fixed interleaver lengths, the perfor-

mance may be improved for moderate and high SNR.'s by increasing the free distance.

Choosing primitive polynomials as the feedback polynomials in the constituent encoders

usually results in an increased free distance.

The exceptional performance of Turbo codes at low SNR's is due to the sparse dis-

tance spectrum and the resultant ability of the code to follow the free distance asymptote

at moderate to low SNR's. The use of systematic feedback encoders and pseudorandom

interleavers results in spectral thinning, in which information sequences which gener-

ate low weight parity sequences from the first constituent encoder are interleaved with

high probability to information sequences that generate high weight parity sequences in

the second constituent encoder. Spectral thinning is enhanced by increasing interleaver

lengths. For very large interleavers, spectral thinning results in a sparse distance spec-

trum in which the first several spectral lines are determined solely by input sequences

of weight two. Thus, spectral thinning results in few low weight codewords and a large

number of codewords of "average" weight. This is very similar to the type of distance

spectrum achieved by "random-like" codes [4].

In a more philosophical light, Turbo codes remind us that information theoretical

arguments imply that long block lengths, but not necessarily large free distances, are

required to achieve capacity at moderate BER's. Thus, like convolutional codes, Turbo

codes are a class of codes that achieve long block lengths, but without the corresponding

increased density of the distance spectrum common to convolutional codes, and for which

a practical, albeit nontrivial, decoding algorithm exists. In addition, Turbo codes are

time-varying due to the pseudorandom interleaver, and the time-varying structure is

essential in achieving the distance spectrum that results in near capacity performance

at moderate BER's. This suggests that some effort should be made to find other classes

of time-varying codes, and decoding algorithms, that have good distance spectra, rather

than just large free distances. Finally, since, in fact, long block lengths are required to

achieve near capacity performance at moderate BER's, only modest coding gains will be

achievable in systems that use relatively short block lengths.
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Figure 1: Simulation results for a (37, 21, 65536) Turbo code and a (2,1, 14) MFD con-

volutional code.
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(ho(D) = 1 + D2, hl(D) = D) and without puncturing.
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volutional code and the free distance asymptotes.
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